Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Crystallogr ; 52(3): 345-358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35291441

RESUMO

Hybrid moieties of ethynylated-thiourea, Th1 and Th2 have been synthesised via the addition reaction between ethynyl derivatives and 4-tert-butylbenzoyl isothiocyanate in acetone, and were characterised by selected spectroscopic methods (i.e., 1H and 13C NMR, UV-visible, FT-IR) and elemental analysis. Thermogravimetric analysis indicated that Th1 and Th2 were relatively stable up to ca. 210 °C. Single-crystal X-ray diffraction was used to identify the crystal structure of Th2 in which the centre of 1-acyl thiourea moiety (-C(O)NHC(S)NH) exhibits S conformation. The Hirshfeld surface analysis has allowed visualizing the crystal packing, which is characterised by the prolonged intermolecular N-H⋯O = C and N-H⋯S = C hydrogen-bonding interactions within Th2 molecule. Electrochemical data of both compounds correspondingly exhibit irreversible redox potential processes. Besides, frontier molecular orbitals and Natural Bond Orbital population analysis were computed at the B3LYP/6-31G (d, p) level of approximation, suggesting strong delocalization of the electronic density through a conjugated π-system involving the ethynyl-phenyl and thiourea groups. Graphical Abstract: Figure of molecular structure for acyl thiourea-ethynyl derivative. Two derivatives of acyl thiourea-ethynyl were synthesised and characterised by selected spectroscopic methods such as 1H and 13C NMR, UV-visible, FT-IR, elemental, thermal, electrochemical, X-ray diffraction, and density functional theory (DFT) calculation for molecular orbitals and natural bond orbital population analysis.

2.
PLoS One ; 15(11): e0241113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33147247

RESUMO

Two organometallic compounds known as (E)-1-ferrocenyl-(3-fluorophenyl)prop-2-en-1-one (Fc1) and (E)-1-ferrocenyl-(3-fluoro-4-methoxyphenyl)prop-2-en-1-one (Fc2) are designed and synthesized for application in dye-sensitized solar cell (DSSC) based on a donor-π-acceptor (D-π-A) architecture. By strategically introducing a methoxy group into the acceptor side of the compound, Fc2 which has adopted a D-π-A-AD structure are compared with the basic D-π-A structure of Fc1. Both compounds were characterized by utilizing the IR, NMR and UV-Vis methods. Target compounds were further investigated by X-ray analysis and studied computationally using Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) approaches to explore their potential performances in DSSCs. An additional methoxy group has been proven in enhancing intramolecular charge transfer (ICT) by improving the planarity of Fc2 backbone. This good electronic communication leads to higher HOMO energy level, larger dipole moment and better short-circuit current density (Jsc) values. Eventually, the presence of methoxy group in Fc2 has improved the conversion efficiency as in comparison to Fc1 under the same conditions.


Assuntos
Chalconas/química , Fontes de Energia Elétrica , Compostos Ferrosos/química , Compostos Organometálicos/química , Energia Solar , Corantes/síntese química , Modelos Moleculares , Estrutura Molecular
3.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 3): 387-391, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148881

RESUMO

A new conjugated carbazole chalcone compound, (E)-3-[4-(9,9a-di-hydro-8aH-carbazol-9-yl)phen-yl]-1-(4-nitro-phen-yl)prop-2-en-1-one (CPNC), C27H18N2O3, was synthesized using a Claisen-Schmidt condensation reaction. CPNC crystallizes in the monoclinic non-centrosymmetric space group Cc and adopts an s-cis conformation with respect to the ethyl-enic double bonds (C=O and C=C). The crystal packing features C-H⋯O and C-H⋯π inter-actions whose percentage contribution was qu-anti-fied by Hirshfeld surface analysis. Quantum chemistry calculations including geometrical optimization and mol-ecular electrostatic potential (MEP) were analysed by density functional theory (DFT) with a B3LYP/6-311 G++(d,p) basis set.

4.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 5): 632-637, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31110801

RESUMO

In the title compound, C18H12O3S2, synthesized by the Claisen-Schmidt condensation method, the essentially planar chalcone unit adopts an s-cis configuration with respect to the carbonyl group within the ethyl-enic bridge. In the crystal, weak C-H⋯π inter-actions connect the mol-ecules into zigzag chains along the b-axis direction. The mol-ecular structure was optimized geometrically using Density Functional Theory (DFT) calculations at the B3LYP/6-311 G++(d,p) basis set level and compared with the experimental values. Mol-ecular orbital calculations providing electron-density plots of HOMO and LUMO mol-ecular orbitals and mol-ecular electrostatic potentials (MEP) were also computed both with the DFT/B3LYP/6-311 G++(d,p) basis set. The experimental energy gap is 3.18 eV, whereas the theoretical HOMO-LUMO energy gap value is 2.73 eV. Hirshfeld surface analysis was used to further investigate the weak inter-actions present.

5.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 5): 685-689, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31110811

RESUMO

The title compound, C23H15NO3, adopts an s-cis conformation with respect to the ethyl-ene C=C and carbonyl C=O double bonds in the enone unit. The mol-ecule is significantly twisted with a dihedral angle of 48.63 (14)° between the anthracene ring system and the benzene ring. In the crystal, mol-ecules are linked into inversion dimers with an R 2 2(10) graph-set motif via pairs of C-H⋯O hydrogen bonds. The inter-molecular inter-actions were analysed and qu-anti-fied by Hirshfeld surface analysis. The mol-ecular structure was optimized and a small HOMO-LUMO energy gap of 2.55 eV was obtained using the DFT method at the B3LYP/6-311 G++(d,p) level of theory. This value is in close agreement with the experimental value of 2.52 eV obtained from the UV-vis analysis. The crystal used was a two-component merohedral twin with a refined ratio of 0.1996 (16):0.8004 (16).

6.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 1): 58-63, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30713734

RESUMO

The asymmetric unit of the title halogenated chalcone derivative, C15H10BrFO, contains two independent mol-ecules, both adopting an s-cis configuration with respect to the C=O and C=C bonds. In the crystal, centrosymmetrically related mol-ecules are linked into dimers via inter-molecular hydrogen bonds, forming rings with R 1 2(6), R 2 2(10) and R 2 2(14) graph-set motifs. The dimers are further connected by C-H⋯O inter-actions into chains parallel to [001]. A Hirshfeld surface analysis suggests that the most significant contribution to the crystal packing is by H⋯H contacts (26.3%). Calculations performed on the optimized structure obtained using density functional theory (DFT) at B3LYP with the 6-311 G++(d,p) basis set reveal that the HOMO-LUMO energy gap is 4.12 eV, indicating the suitability of this crystal for optoelectronic and biological applications. The nucleophilic and electrophilic binding site regions are elucidated using the mol-ecular electrostatic potential (MEP).

7.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 11): 1589-1594, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30443387

RESUMO

The asymmetric unit of the title compound, 2C17H12N2O3·H2O comprises two mol-ecules of (E)-3-(1H-indol-2-yl)-1-(4-nitro-phen-yl)prop-2-en-1-one and a water mol-ecule. The main mol-ecule adopts an s-cis configuration with respect to the C=O and C=C bonds. The dihedral angle between the indole ring system and the nitro-substituted benzene ring is 37.64 (16)°. In the crystal, mol-ecules are linked by O--H⋯O and N-H⋯O hydrogen bonds, forming chains along [010]. In addition, weak C-H⋯O, C-H⋯π and π-π inter-actions further link the structure into a three-dimensional network. The optimized structure was generated theoretically via a density functional theory (DFT) approach at the B3LYP/6-311 G++(d,p) basis level and the HOMO-LUMO behaviour was elucidated to determine the energy gap. The obtained values of 2.70 eV (experimental) and 2.80 eV (DFT) are desirable for optoelectronic applications. The inter-molecular inter-actions were qu-anti-fied and analysed using Hirshfeld surface analysis.

8.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 10): 1427-1432, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30319794

RESUMO

The structures of two new anthracenyl chalcones, namely (E)-1-(anthracen-9-yl)-3-(4-nitro-phen-yl)prop-2-en-1-one, C23H15NO3, and (E)-1-(anthracen-9-yl)-3-(4-iodo-phen-yl)prop-2-en-1-one, C23H15IO are reported. A structural comparative study between the two chalcones was performed and some effects on the geometrical parameters, such as planarity and dihedral angles, are described. The mol-ecular geometry was determined by single-crystal X-ray diffraction, and density functional theory (DFT) at B3LYP with the 6-311++G(d,p) basis set was applied to optimize the ground-state geometry. In addition, inter-molecular inter-actions responsible for the crystal packing were analysed. The electronic properties, such as excitation energies and HOMO-LUMO energies were calculated by time-dependent density functional theory (TD-DFT) and the results complement the experimental findings. The mol-ecular electrostatic potential (MEP) was also investigated at the same level of theory in order to identify and qu-antify the possible reactive sites.

9.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 10): 1491-1496, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30319808

RESUMO

The crystal structures of (E)-1-(anthracen-9-yl)-3-(3H-indol-2-yl)prop-2-en-1-one, C25H17NO, and (E)-1-(anthracen-9-yl)-3-[4-(di-methyl-amino)-naphthalen-1-yl]prop-2-en-1-one, C29H23NO, are reported. In each case the anthracene ring system and pendant ring system are almost perpendicular to each other [dihedral angles = 75.57 (7)° and 70.26 (10)°, respectively]. In the extended structures, weak N-H⋯O, C-H⋯O and C-H⋯π inter-actions influence the centrosymmetric crystal packing. Density functional theory calculations were carried out using a 6-311 G++(d,p) basis set and the calculated structures are in good agreement with the crystal structures. The compounds were also characterized by UV-Vis absorption spectroscopy and the smallest (HOMO-LUMO) energy gaps of 2.89 and 2.54 eV indicate the enhanced non-linear responses (inter-molecular charge transfers) of these systems.

10.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 9): 1302-1308, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30225122

RESUMO

The title chalcones, C31H23NO and C35H23NO, were synthesized via Claisen-Schmidt condensation reactions. Both structures were solved and refined using single-crystal X-ray diffraction data and optimized at the ground state using the density functional theory (DFT) method with the B3LYP/6-311++G(d,p) level. In the crystals, π-π inter-ations and weak C-H⋯O and C-H⋯π inter-actions are observed. The effect of these inter-molecular inter-actions in the solid state can be seen by the difference between the experimental and theoretical optimized geometrical parameters. The structures have also been characterized by UV-Vis spectroscopy. The smallest energy gaps of 2.86 and 2.96 eV enhance the nonlinear responses of such mol-ecular systems. Hirshfeld surface analyses and 2D (two-dimensional) fingerprint plots were used to qu-antify the inter-molecular inter-actions present in the crystal, indicating that these are the most important contribution to the crystal packing.

11.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 8): 1087-1092, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30116568

RESUMO

The title compounds, C24H18O2 and C24H17FO2, were synthesized using the Claisen-Schmidt condensation method and characterized by UV-Vis spectroscopy. Weak inter-molecular C-H⋯O, C-H⋯π and π-π hydrogen-bonding inter-actions help to stabilize the crystal structures of both compounds. The geometrical parameters obtained from the mol-ecular structure were optimized using density functional theory (DFT) calculations at the B3LYP/6-311++G(d,p) level, showing a good correlation with the experimental results. The small HOMO-LUMO energy gaps of 3.11 and 3.07 eV enhances the non-linear responses of these mol-ecular systems.

12.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 6): 780-785, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29951229

RESUMO

The mol-ecular and crystal structure of two new chalcone derivatives, (E)-1-(anthracen-9-yl)-3-[4-(piperidin-1-yl)phen-yl]prop-2-en-1-one, C28H25NO, (I), and (E)-1-(anthracen-9-yl)-3-[4-(di-phenyl-amino)-phen-yl]prop-2-en-1-one, C35H25NO, (II), with the fused-ring system at the same position are described. In the crystals of (I) and (II), the mol-ecules are linked via C-H⋯O hydrogen bonds into inversion dimers, forming R22(22) and R22(14) ring motifs, respectively. Weak inter-molecular C-H⋯π inter-actions further help to stabilize the crystal structure, forming a two-dimensional architecture. The mol-ecular structures are optimized using density functional theory (DFT) at B3LYP/6-311 G++(d,p) level and compared with the experimental results. The smallest HOMO-LUMO energy gaps of (I) (exp . 2.76 eV and DFT 3.40 eV) and (II) (exp . 2.70 eV and DFT 3.28 eV) indicates the suitability of these crystals in optoelectronic applications. All inter-molecular contacts and weaker contributions involved in the supra-molecular stabilization are investigated using Hirshfeld surface analysis. The mol-ecular electrostatic potential (MEP) further identifies the positive, negative and neutral electrostatic potential regions of the mol-ecules.

13.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 5): 650-655, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850084

RESUMO

The title chalcone compounds, C27H18O (I) and C33H20O (II), were synthesized using a Claisen-Schmidt condensation. Both compounds display an s-trans configuration of the enone moiety. The crystal structures feature inter-molecular C-H⋯O and C-H⋯π inter-actions. Quantum chemical analysis of density functional theory (DFT) with a B3LYP/6-311++G(d,p) basis set has been employed to study the structural properties of the compound. The effect of the inter-molecular inter-actions in the solid state are responsible for the differences between the experimental and theoretical optimized geometrical parameters. The small HOMO-LUMO energy gap in (I) (exp : 3.18 eV and DFT: 3.15 eV) and (II) (exp : 2.76 eV and DFT: 2.95 eV) indicates the suitability of these compounds for optoelectronic applications. The inter-molecular contacts and weak contributions to the supra-molecular stabilization are analysed using Hirshfeld surface analysis.

14.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 4): 492-496, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29765753

RESUMO

The title compound, C31H20O, was synthesized using a Claisen-Schmidt condensation. The enone group adopts an s-trans conformation and the anthracene ring systems are twisted at angles of 85.21 (19) and 83.98 (19)° from the enone plane. In the crystal, mol-ecules are connected into chains along [100] via weak C-H⋯π inter-actions. The observed band gap of 3.03 eV is in excellent agreement with that (3.07 eV) calculated using density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. The Hirshfeld surface analysis indicates a high percentage of C⋯H/H⋯C (41.2%) contacts in the crystal.

15.
Acta Crystallogr E Crystallogr Commun ; 73(Pt 10): 1595-1598, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29250389

RESUMO

In the title mol-ecular salt, 2C6H10N3O+·C8H4O42-, the N atom of each of the two 2-amino-4-meth-oxy-6-methyl-pyrimidine mol-ecules lying between the amine and methyl groups has been protonated. The dihedral angles between the pyrimidine rings of the cations and the benzene ring of the succinate dianion are 5.04 (8) and 7.95 (8)°. Each of the cations is linked to the anion through a pair of N-H⋯O(carboxyl-ate) hydrogen bonds, forming cyclic R22(8) ring motifs which are then linked through inversion-related N-H⋯O hydrogen bonds, giving a central R24(8) motif. Peripheral amine N-H⋯O hydrogen-bonding inter-actions on either side of the succinate anion, also through centrosymmetric R22(8) extensions, form one-dimensional ribbons extending along [211]. The crystal structure also features π-π stacking inter-actions between the aromatic rings of the pyrimidine cations [minimum ring centroid separation = 3.6337 (9) Å]. The inter-molecular inter-actions were also investigated using Hirshfeld surface studies and two-dimensional fingerprint images.

16.
Acta Crystallogr E Crystallogr Commun ; 73(Pt 9): 1305-1307, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28932461

RESUMO

In the title mol-ecular salt, C6H10N3O+·C7H5O3-, the cation is protonated at the N atom lying between the amine and methyl substituents and the dihedral angle between the carboxyl group and its attached ring in the anion is 4.0 (2)°. The anion features an intra-molecular O-H⋯O hydrogen bond, which closes an S(6) ring. The cation and anion are linked by two N-H⋯O hydrogen bonds [R22(8) motif] to generate an ion pair in which the dihedral angle between the aromatic rings is 8.34 (9)°. Crystal symmetry relates two ion pairs bridged by further N-H⋯O hydrogen bonds into a tetra-meric DDAA array. The tetra-mers are linked by pairs of C-H⋯O hydrogen bonds to generate [100] chains. Hirshfeld surface and fingerprint plot analyses are presented.

17.
Acta Crystallogr E Crystallogr Commun ; 72(Pt 5): 648-51, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27308010

RESUMO

In the title compound, C23H14ClFO, the enone moiety adopts an E conformation. The dihedral angle between the benzene and anthracene ring is 63.42 (8)° and an intra-molecular C-H⋯F hydrogen bond generates an S(6) ring motif. In the crystal, mol-ecules are arranged into centrosymmetric dimers via pairs of C-H⋯F hydrogen bonds. The crystal structure also features C-H⋯π and π-π inter-actions. Hirshfeld surface analysis was used to confirm the existence of inter-molecular inter-actions.

18.
Acta Crystallogr E Crystallogr Commun ; 72(Pt 5): 716-9, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27308026

RESUMO

In the title chalcone derivative, C16H11ClF2O2, the enone group adopts an E conformation. The dihedral angle between the benzene rings is 0.47 (9)° and an intra-molecular C-H⋯F hydrogen bond closes an S(6) ring. In the crystal, mol-ecules are linked into a three-dimensional network by C-H⋯O hydrogen bonds and aromatic π-π stacking inter-actions are also observed [centroid-centroid separation = 3.5629 (18) Å]. The inter-molecular inter-actions in the crystal structure were qu-anti-fied and analysed using Hirshfeld surface analysis.

19.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 6): o376-7, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26090174

RESUMO

In the crystal of the title mol-ecular salt, C7H9N6O(+)·NO3 (-), the cations and anions are linked via N-H⋯O and O-H⋯O hydrogen bonds, forming sheets parallel to (100). Within the sheets there are numerous hydrogen-bonding ring motifs.

20.
Artigo em Inglês | MEDLINE | ID: mdl-25942090

RESUMO

The structure of (E)-1-(4-Bromophenyl)-3-(napthalen-2-yl)prop-2-en-1-one (C19H13BrO) crystallized in the triclinic system of P-1 space group. The unit cell dimensions are: a=5.8944 (9)Å, b=7.8190 (12)Å, c=16.320 (2)Å, α=102.4364 (19)°, ß=95.943 (2)°, γ=96.274 (2)° and Z=2. The physical properties of this compound was determined by the spectroscopic methods (FTIR and (1)H and (13)C NMR). Quantum chemical investigations have been employed to investigate the structural and spectral properties. The molecular structure, vibrational assignments, (1)H and (13)C NMR chemical shift values, non-linear optical (NLO) effect, HOMO-LUMO analysis and natural bonding orbital (NBO) analysis were calculated using HF and DFT/B3LYP methods with 6-311++G(d,p) basis set in the ground state. The results show that the theoretical calculation of the geometrical parameters, vibrational frequencies and chemical shifts are comparable with the experimental data. The crystal structure is influenced and stabilized by weak C-H⋯π interactions connecting the molecules into infinite supramolecular one dimensional ladder-like arrangement. Additionally, this compound is evaluated for their antibacterial activities against gram positive and gram negative strains using a micro dilution procedure and shows activities against a panel of microorganisms.


Assuntos
Chalcona/síntese química , Chalcona/farmacologia , Chalconas/síntese química , Chalconas/farmacologia , Modelos Moleculares , Naftalenos/síntese química , Naftalenos/farmacologia , Teoria Quântica , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Isótopos de Carbono , Chalcona/química , Chalconas/química , Cristalografia por Raios X , Dureza , Hidrogênio , Ligação de Hidrogênio , Testes de Sensibilidade Microbiana , Conformação Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Naftalenos/química , Dinâmica não Linear , Fenômenos Ópticos , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Vibração , Leveduras/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...